
1. Introduction
The Madden-Julian Oscillation (MJO) is a quasi-periodic signal of eastward propagating convection anomalies 
in the tropics with a period of 30–60 days (Madden & Julian, 1971, 1972). Active MJO events occur on an irreg-
ular basis, though most strongly during October–April, and vary considerably between events by their individual 
propagation, amplitude, and life cycle characteristics (B. Wang et al., 2019). As the dominant form of intrasea-
sonal variability in the tropics, the MJO strongly impacts precipitation timing and amounts over the Maritime 
Continent, but it has also been connected to tropical cyclone activity (e.g., Vitart & Robertson, 2018), midlatitude 
weather (e.g., Arcodia et al., 2020; Henderson et al., 2016; Sardeshmukh & Hoskins, 1988), and many other 
aspects of global atmospheric circulation.

The timescale, quasiperiodic nature, and widespread impacts of the MJO make it a promising target for improving 
subseasonal weather forecasts (Waliser et al., 2003). Ample research and model development efforts have recently 
been delegated toward improving weather forecast model prediction skill of the MJO and its teleconnections 
(Vitart, 2017; H. Kim et al., 2018), resulting in a prediction skill of around 30 days for some dynamical weather 
forecast models (Peng et al., 2023; Xiang et al., 2022; Zavadoff et al., 2023) and similarly for recent statistical 
approaches (Krouma et al., 2023; Silini et al., 2022). However, models face significant challenges when trying 
to simulate and forecast the MJO. For one, the MJO is a convective signal, but most dynamical forecast models 
must parameterize convection due to their coarse resolution, leading to errors in simulating MJO propagation, 
initiation, and amplitude (H. Zhu et al., 2009; H. Kim et al., 2019). Simulation of the MJO is further degraded by 
mean state biases that hamper their MJO simulation, including biases in mean moisture gradient, SST variability, 
and horizontal moisture advection (H. Kim et al., 2019; Kang et al., 2020; Lim et al., 2018). All of these issues 
interact in complex ways to limit MJO forecast skill.

Poor model representation of the MJO prompts the question of how predictable the MJO could be, if models were 
improved. Previous studies address this question using perfect-model predictability experiments, exemplified in 
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Waliser et al. (2003). In these experiments, instead of computing skill using model forecast errors from observa-
tions, the observations are replaced by another simulation from the same model as the forecasts. These experi-
ments can be considered a “best case scenario” for prediction skill if the forecast model had a perfect mean state 
and near-perfect initial conditions (H. Kim et al., 2018). Previous perfect-model predictability experiments found 
a potential MJO predictability of up to 35–45 days when using state-of-the-art ensemble forecast models (Neena 
et al., 2014; Xiang et al., 2022; S. Wang et al., 2019; Wu et al., 2016).

Most predictability estimates use coarse resolution models that parameterize convection. J. Zhu et  al.  (2020) 
showed that the potential predictability of the MJO is strongly dependent on convective parameterization scheme, 
with a more realistic (though still imperfect) scheme being more predictable by up to 15  days. The impres-
sive 35-40-day MJO predictability in ECMWF ensemble forecasts (S. Wang et al., 2019) has been attributed to 
improvements in convective parametrization and model physics (Vitart, 2014), though the ECMWF still uses a 
parameterization for convection. Further, the literature varies substantially in how they generate initial conditions 
for the forecasts runs, which clouds the interpretability of potential predictability estimates from multi-model 
forecasts (Vitart, 2017).

An alternative to using a convective parameterization is to simulate the MJO in fine resolution, global 
cloud-permitting models (Miyakawa et al., 2014; Zavadoff et al., 2023). The MJO in these models is more real-
istic and yields prediction skill of nearly 30 days with a single ensemble forecast (comparable to an 11-member 
ensemble ECMWF forecast). However, these models are extremely computationally expensive and can only 
feasibly simulate comparatively few MJO events (<100 in the above studies), restricting their ability to assess 
the potentially significant differences in predictability for different MJO characteristics and background states 
(Wu et al., 2023). A more computationally practical alternative is to use a multiscale modeling framework that 
couples a coarse resolution global model to a fine resolution cloud resolving model (Hannah et al., 2015; Randall 
et al., 2016). These multiscale models are much more efficient than global cloud permitting models, and the 
multiscale framework naturally permits separating convective versus large scale influence on predictability. As 
yet, no studies have used a multiscale model to extensively estimate MJO potential predictability.

In this manuscript, we perform a perfect-model predictability experiment using a superparameterized version 
of CAM (SPCAM), a multiscale model that replaces the convective parameterization in CAM with a cloud 
resolving component. We utilize the multiscale structure of superparameterization to generate initial conditions 
for the forecast runs by imposing a perturbation on the convective scale. Section  2 describes the model and 
forecast generation procedure, then defines the analyses used for estimating predictability. Section 3 shows the 
results of the predictability experiments, and Section 4 discusses the results in context of previous work and their 
limitations.

2. Methods
2.1. Model and Initial Conditions

We assess the potential predictability of the MJO using a superparameterized version of the Community Atmos-
pheric Model (SPCAM) (M. F. Khairoutdinov & Randall,  2001; M. Khairoutdinov et  al.,  2005). The global 
climate model (GCM) component of SPCAM is CAM4 with 1.9°latitude x 2.5°longitude resolution, 26 verti-
cal levels, and a timestep of 30 min. Sea surface temperatures are prescribed using monthly climatology. Each 
larger GCM-scale grid box has a 2-D cloud resolving model (CRM) embedded within it. The CRM calculates 
the cloud-scale processes explicitly, replacing the convective parameterization. Each CRM has 32 horizontal 
gridboxes aligned east to west in each larger GCM gridbox, with 4,000 m horizontal resolution and 24 vertical 
levels that align with the lower levels of the GCM. The CRM timestep is 20 s. The CRMs use a one-moment 
SAM microphysics parameterization scheme based on M. F. Khairoutdinov and Randall  (2003). The CRMs 
are running simultaneously with the GCM but at a shorter timestep; large-scale tendencies from the GCM and 
convective-scale tendencies from the CRMs are passed between the models at each GCM timestep.

SPCAM has been shown to simulate a relatively realistic MJO, especially compared to CAM (H. Zhu 
et al., 2009). Benedict and Randall (2009) and M. Khairoutdinov et al. (2008) describe some of the main improve-
ments and lingering biases of SPCAM, which we summarize here. SPCAM reasonably simulates the observed 
wavenumber-frequency spectrum of subseasonal tropical waves, including the MJO. The general structural 
evolution and geographic span of the MJO is well represented in SPCAM. The main bias of SPCAM is that it 
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overestimates the strength and variability of the MJO, especially over the Western Pacific, in opposition to most 
GCMs  that have a weak MJO.

To generate initial conditions for the forecast runs, we add a second CRM to each GCM gridbox in SPCAM, 
following the idea of “multiple-instance superparameterization” in Subramanian and Palmer  (2017); Jones 
et al. (2019). During the control simulation, we modify the radiative and convective components of SPCAM to 
run a second “silent” CRM in parallel to the standard CRM in each gridbox. At each timestep, the GCM passes 
the same large-scale information to both CRMs. Each CRM independently calculates convective tendencies as 
in the standard SPCAM, but only the first CRM passes information back to the GCM. The second silent CRM 
simply outputs its state to a file. Each CRM uses CRM-scale information from its own previous timestep and 
thus stays spun up throughout the simulation. The GCM only receives information from one continuous CRM, so 
the control run output is essentially a standard SPCAM simulation. Independence between the two CRMs comes 
from their initialization by a random temperature perturbation near the surface on the first timestep, which is the 
standard for initializing SPCAM; afterward, they run continuously and independently. See Figure S1 for a visual 
schematic of the control run setup.

The silent CRM information is used as the initial perturbation for the forecast runs. The GCM-scale information 
used in the forecast restarts is the same as from the control run, so the only initial perturbation of the forecast is 
from the convective scale. This allows for scale separation of the initial perturbation and can be thought of as 
simulating a situation where we have perfect information of the GCM-scale conditions with uncertainty in the 
convective scale. Subramanian and Palmer  (2017); Jones et al.  (2019) examined how running multiple CRM 
components affects ensemble spread and found the stochastic-like nature of the CRMs better represents observed 
variance of deep convection in the tropics than convective parameterizations.

For this project, we use a 20-year control simulation. 60-day single ensemble member forecasts are initialized 
using the silent CRM information in a regular version of SPCAM every 5 days during boreal winter (October - 
April), resulting in 798 forecasts. We restrict analysis to boreal winter due to the shown lower predictability of 
boreal summer intraseasonal convective signals (S. Wang et al., 2019), but this analysis could be repeated for a 
similar study of boreal summer events.

2.2. Analyzing Predictability

To isolate the MJO signal from our forecast runs, we use a version of the OLR-based MJO index (OMI), first 
developed in Kiladis et al. (2014) and modified in Weidman et al. (2022). The OMI is an EOF-based index 
that uses the two leading principal components (PCs) of 30–96-day filtered daily tropical OLR to track the 
strength and propagation of the MJO through time. For forecasting purposes, we use a real-time version of 
the OMI (ROMI) as described in Kiladis et al. (2014); S. Wang et al. (2019). In brief, the ROMI is calculated 
by removing the mean OLR anomaly of the previous 40 days from the raw OLR anomaly and then taking a 
9-day running average of the result, tapered to 7-, 5-, 3-, and 1-day running averages at the end of the fore-
cast. This is to remove high and low frequency signals beyond that of the MJO. The filtered/smoothed OLR 
is then projected onto a set of seasonally-varying OLR-based EOFs calculated from an independent 40-year 
SPCAM run, following the EOF rotation procedure in Weidman et al. (2022). The OLR anomaly is calculated 
by removing the mean and first three harmonics of the seasonal cycle from each gridpoint, again calculated 
from a 40-year SPCAM run.

Many studies use the real-time multivariate (RMM) index (Wheeler & Hendon,  2004) for forecasting 
purposes. The RMM is based on EOFs describing the zonal structure of OLR and zonal wind at 200 and 
850 hPa; however, Straub (2013) showed that the RMM underrepresents convection compared to zonal wind, 
causing the RMM to miss MJO-like convective signals and poorly predict desired forecasting variables such 
as precipitation and surface temperature (S. Wang et al., 2019; Kumar et al., 2020; Hannah et al., 2015). In 
addition, the lack of meridional structure in the RMM confounds the MJO signal with equatorial Kelvin waves 
(Roundy et al., 2009). For these reasons, we use the OMI here; results do not substantially change when using 
the RMM.

Following previous MJO predictability studies, we use three metrics for determining MJO predictability: the 
bivariate correlation coefficient (COR), root mean squared error (RMSE) and signal to noise, all of which are 
calculated using the first two PCs of the ROMI.
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2.2.1. COR and RMSE

Following for example, Lin et al. (2008), the COR is calculated as

COR(𝑡𝑡) =

∑𝑁𝑁

𝑖𝑖=1
[𝑎𝑎1𝑖𝑖(𝑡𝑡)𝑏𝑏1𝑖𝑖(𝑡𝑡) + 𝑎𝑎2𝑖𝑖(𝑡𝑡)𝑏𝑏2𝑖𝑖(𝑡𝑡)]
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and root mean squared error (RMSE) as

RMSE(𝑡𝑡) =

√

√

√

√
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2
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2
])

 (2)

where a1,2(t) are the first two PCs of the ROMI for the control simulation t days after forecast initiation, b1,2(t) 
are the PCs of the ROMI for the forecast, and N is the total number of forecasts. By convention, forecasts are 
considered skillful until COR falls below 0.5. The COR is essentially the weighted similarity of the ROMI, while 
the RMSE includes information about amplitude differences (Wilks, 2019).

2.2.2. Signal to Noise

COR and RMSE quantify the difference between the control and forecast runs on each day. Another assessment 
of predictability is to relate the strength of the MJO signal to the day-to-day variability of the tropics (Waliser 
et al., 2003). As long as the MJO signal remains stronger than the background noise, it could be predictable. We 
quantify noise as the mean squared error as in previous studies. Since the MJO is a propagating signal with a 
period of 30–60 days, the “signal” is calculated as the average amplitude of the ROMI within a sliding window 
that approximately captures a full MJO event. Previous work showed that signal is insensitive to window size, so 
we follow previous studies and use a 51-day window (Neena et al., 2014; Waliser et al., 2003). Signal is defined as

S2(𝑡𝑡) =
1

𝑁𝑁

𝑁𝑁
∑
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(𝑡𝑡) + 𝑎𝑎

2

2𝑖𝑖
(𝑡𝑡)
]

)

 (3)

where again a1,2 are the two PCs of the control run and L is 25 for a window size of 51. Since the control and 
forecast runs are essentially separate runs of the same model, we expect signal to be similar if the forecast ROMI 
was used; we use the control for convenience when calculating the sliding window.

3. Results
To visualize how the MJO simulation differs between the control and forecast runs, we plot the two components 
of the ROMI on a phase diagram for four example forecasts compared to the control run over the same period 
(Figure 1). A typical active MJO trajectory will propagate counterclockwise (eastward) outside of the dashed 
circle (representing an amplitude greater than 1), such as in the two cases on the right in Figure 1. The example 
forecasts here are chosen arbitrarily to represent forecasts initiated during active MJO periods in Phases 1/8, 2/3, 
4/5, and 6/7, but are broadly representative of forecast behavior. The exact timing and pattern differs for each fore-
cast, but in general the control and forecast trajectories track together closely for about 15 days before the ampli-
tude or phase of the forecast run starts to drift from the control. From these examples, we see that the MJO signal 
remains strongly coherent for at least 10–15 days after the initial convective perturbation in the forecast run.

We use the bivariate COR and RMSE to quantitatively assess MJO predictability for each day after the forecast 
initiation (Figure 2). Both metrics are also recalculated using only forecasts that were initiated on an active or 
inactive MJO day as defined by a ROMI amplitude above 1.14, the median amplitude over the 20-year period. 
The 95% confidence interval is calculated using a Student's t test. The initial strength of the MJO does not signif-
icantly affect either of the metrics in Figures 2a and 2b; the COR of all three cases fall below 0.5 between days 
37–40. The COR shows nearly perfect correlation for 10–15 days, corroborating the high similarity between the 
control and forecast trajectories in Figure 1. After the first few days, the RMSE increases approximately linearly 
until reaching a saturation around days 37–40.

Perhaps a more operationally relevant metric is to look at the predictability of the MJO based on target date; in 
other words, how far ahead could a strong or weak MJO event be predicted (Xiang et al., 2015). COR and RMSE 
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are recalculated based on the strength of the MJO on the target date and shown in Figures 2c and 2d. A lag of −5 
means the forecast was initiated 5 days before a strong or weak MJO target date. The correlation is significantly 
larger for strong targets compared to weak targets between days 10–30 based on the 95% confidence interval, 
though they all converge at 0.5 COR between 37 and 40 days. The RMSE is about the same for both strong and 
weak MJO targets until the error saturates after day 40. This is likely because although the correlation is stronger 
for strong targets, the MJO signal itself (the amplitude of the ROMI) is also larger, so the mean error remains 
consistent.

Several studies have suggested that predictability is dependent on target phase of the MJO (S. Wang et al., 2019). 
COR is recalculated by separating forecasts by initial phase and target phase using the same methodology as 
above. Correlations for all initial/target phases and active MJO initial/target phases are plotted in Figure 3. There 
is little phase dependence in COR before 20–25 days; afterward, there is slightly higher predictability for initial 
Phase 2 and target Phase 5–6 for all and active MJO periods, and slightly decreased predictability for target Phase 
2. Phase 2 corresponds to enhanced precipitation over the Indian Ocean, and Phase 5–6 aligns with precipitation 
transitioning from the Maritime Continent to the Western Pacific, generally 15–20 days after Phase 2. Several 
other models have shown worse skill for MJO events that propagate across the Maritime Continent, a phenome-
non known as the Maritime Continent barrier (Abhik et al., 2023; Du et al., 2023; S. Wang et al., 2019). SPCAM 
does not seem to have this problem and in fact finds these events (which are often strong events) more predictable.

Signal and noise (mean squared error) is our final predictability metric (Figure 4). The MJO signal is interpreted 
as predictable as long as the signal is larger than the error. Again, results seem to be insensitive to strength 
of the initial MJO signal; the signal intersects with error between days 35–40 for all three cases. Since we 
are using a perfect-model experiment, signal should be nearly constant through lead time; the small increase 
(decrease) at the beginning of the period for strong (weak) events is because we are restricting our set of forecasts 

Figure 1. MJO phase trajectories of the ROMI for four example forecast cases. Green dashed lines are the control simulation 
and purple lines are the forecast runs. Filled circles represent the beginning of the forecast, with squares every subsequent 
5 days for a total of 50 days.
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Figure 2. Bivariate correlation (left) and RMSE (right) between control and forecast runs by time after forecast initiation. 
(Top) Using the ROMI principal components at each day, calculated for all forecasts (green), strong MJO initial days (orange) 
and weak MJO initial days (purple). (Bottom) Same, but using strong and weak target dates. Shading represents a 95% 
confidence interval. The dashed lines are at 0.5 (left) and 𝐴𝐴

√

2 (right).

Figure 3. Bivariate correlation as a function of forecast lead time for different MJO phases, separated by initial (top) and 
target (bottom) date. Using data from all forecasts (left) and only strong MJO events (right).
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to initially stronger (weaker) MJO signals, and this feature dissipates as the 
error surpasses the signal. Error slowly increases until it saturates just after 
surpassing the signal. In general, the signal to noise metric aligns with the 
conclusions drawn from COR and RMSE, implying a predictability of the 
MJO in boreal winter of 35–40 days.

4. Summary and Discussion
By replacing the convective parameterization with a cloud resolving 
component and using a novel technique to initialize the forecast runs using 
convective-scale uncertainty, we find the MJO potential predictability in 
SPCAM to be about 35–40 days using a single-member ensemble forecast. 
This estimate is comparable to the highest performing ensemble forecast-
ing models (W. Wang et  al.,  2014; Xiang et  al.,  2022; Wu et  al.,  2016), 
though these models find predictability closer to 20–30  days when using 
single-member ensemble forecasts (Neena et  al.,  2014; H.-M. Kim 
et al., 2014). Lim et al. (2018) found prediction skill increased by 1–5 days 
(depending on the model) when increasing the number of ensembles from 
one to three; we expect an ensemble forecast in SPCAM generated from a 
set of multiple silent CRMs to increase potential predictability by a similar 
amount. Further, many prior estimates use the RMM to quantify predictabil-

ity, rather than the ROMI. When repeating analyses with the RMM, we find a decreased potential predictability 
by 2–4 days, which is comparable to previous studies (S. Wang et al., 2019). However, the broad findings or 
interpretations do not largely change when using a different MJO index.

MJO predictability in SPCAM is not strongly dependent on initial phase or amplitude, but has slightly higher 
predictability for strong target dates in Phases 5–6. The stronger predictability of MJO events passing over the 
Maritime Continent is in opposition to most other models in which the MJO tends to dissipate too frequently 
over the Maritime Continent (S. Wang et al., 2019). Abhik et al.  (2023) suggested that this deficiency arises 
from issues with MJO simulation due to model physics, rather than an inherent predictability barrier. Our results 
corroborate this hypothesis, since SPCAM more readily simulates MJO propagation across the Maritime Conti-
nent and is also biased toward a more active MJO in the Western Pacific.

The potential predictability limits found by SPCAM may not be possible to reach in the real world because the 
MJO and mean state in SPCAM do not perfectly replicate observations. Since MJO events in SPCAM are in 
general too vigorous and propagate too easily across the Maritime Continent, our findings may be an overesti-
mation of MJO predictability. Most forecast models have the opposite problem of a weaker and slower MJO than 
observed, especially over the Western Pacific, which would likely result in an underestimation of predictability. In 
addition, we use prescribed sea surface temperatures, which simplifies our interpretation of the results and reduces 
computational expense, but restricts our understanding of how MJO predictability is influenced by interactions 
with different ENSO background states (Mengist & Seo, 2022). Previous studies have shown how including a 
coupled ocean component helps drive MJO propagation and can increase predictability of precipitation and OLR 
after 10 days (Pegion & Kirtman, 2008). Coupled ocean influence on MJO predictability is a complicated topic 
of current research and dependent on model formulation and convective representation (DeMott et al., 2015). 
Here we only simulate MJO events driven by atmospheric internal dynamics which only represents a portion of 
observed MJO events (Fu et al., 2015); investigating MJO predictability in a coupled version of SPCAM would 
be a fruitful topic for future work. The inherent predictability of the real atmosphere is likely not properly repre-
sented by any modeling approach, yet our use of a more realistic convective representation and novel forecast 
initiation method hopefully adds a useful datapoint for our understanding of MJO predictability.

Although it is conventional to use an MJO index to quantify MJO predictability, bivariate indices only capture 
a condensed slice of actual MJO behavior. The goal of improving MJO forecasts requires an understanding 
of the phenomenon and the modeling components that are most important for improving those forecasts. This 
study is a first step in utilizing scale separation in a multiscale model for assessing MJO predictability. With 
this framework, future work should include a thorough analysis of which physical aspects of the MJO lead to its 
predictability, or conversely, which aspects of biased MJO simulation in models lead to decreased forecast skill 

Figure 4. MJO signal (dashed) and mean squared error (solid) as a function 
of forecast lead time for all forecasts (green), strong initial days (orange), and 
weak initial days (purple). Shading represents a 95% confidence interval.
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(see potential examples: Du et al. (2023); Liu et al. (2017)). The scale separation in SPCAM also naturally leads 
to fundamental questions regarding error growth across space and time scales, which would help broaden our 
understanding of the tropical atmosphere.
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